skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nadali, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Notions of transition invariants and closure certificates have seen recent use in the formal verification of controlled dy- namical systems against ω-regular properties. The existing approaches face limitations in two directions. First, they re- quire a closed-form mathematical expression representing the model of the system. Such an expression may be difficult to find, too complex to be of any use, or unavailable due to security or privacy constraints. Second, finding such invari- ants typically rely on optimization techniques such as sum-of- squares (SOS) or satisfiability modulo theory (SMT) solvers. This restricts the classes of systems that need to be formally verified. To address these drawbacks, we introduce a notion of neural closure certificates. We present a data-driven algo- rithm that trains a neural network to represent a closure cer- tificate. Our approach is formally correct under some mild as- sumptions, i.e., one is able to formally show that the unknown system satisfies the ω-regular property of interest if a neural closure certificate can be computed. Finally, we demonstrate the efficacy of our approach with relevant case studies. 
    more » « less